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Chaos in geomagnetic reversal records:

A comparison between Earth’s magnetic field data

and model disk dynamo data

Massimo Cortini' and Christopher C. Barton
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Abstract. The Earth’s geomagnetic field reverses its polarity at irregular time
intervals. However, it is not clear whether a reversal is a deterministic (low-
dimensional) or a random (high-dimensional) process; the duration-frequency
distribution of the polarity time intervals resembles those generated by random
processes, but many models suggest that a geomagnetic field reversal can be the
outcome of a deterministic dynamics, that of the convection in the Earth's outer core.
The latter, in turn, is only a part of an extremely complex system, made up of both
terrestrial and extraterrestrial subsystems nonlinearly interacting with each other over a
wide range of time scales. We studied the geomagnetic field reversal patterns by means
of several techniques of nonlinear dynamics and compared the results obtained on
actual geomagnetic reversal data with synthetic reversal sequences generated by the
Rikitake and Chillingworth-Holmes models of the Earth’s magnetic field. We analyzed
both the geomagnetic and the synthetic reversal scales by nonlinear forecasting and
found that we cannot predict the geomagnetic reversal sequence with nonlinear
forecasting. Predictability of the synthetic data varies widely depending on the model
parameters. Phase portraits of data obtained from the magnetic field models show
fractal structures similar to those associated with the Lorenz attractor. We measured
the correlation dimension D of the synthetic and geomagnetic data by means of the
Grassberger-Procaccia method and found that D¢ always has a value of about one for
the synthetic data. The correlation integrals for the geomagnetic reversal sequence
behave very differently from those of randomized reversal sequences and suggest that
the Earth’s geomagnetic field reversal dynamics is not random. However, the limited
size of the magnetic reversal data set (282 points) and the poor convergence of the
correlation integrals make a quantitative assessment of low-dimensional chaos
impossible. Our analysis sets a lower limit to the correlation dimension of the

geomagnetic reversal dynamics: D¢ > 3.

Introduction

The temporal pattern of reversals of the Earth’s magnetic
field has been extensively studied, and beginning with
Rikitake {1958], it has been modeled by self-excited bistable
disk dynamos that show auto-induced reversals. These mod-
els are simplified descriptions of convection in the Earth’s
outer core, which is believed to be an electrically conductive
fluid where the dipole component of the Earth's magnetic
field is originated. The dynamics of the Rikitake dynamo, as
well as those of slightly different dynamo models [Robbins,
1976: Chillingworth and Holmes, 1980; Shimizu and Hon-
Lura. 1985 Rasband, 1990], have all been shown to be
chaotic [Cook and Roberts, 1970; Ito, 1980; Chillingworth
and Holmes, 1980; Bergé et al., 1984; Shimizi and Honkura,
1985 Holden and Muhamad, 1986; Hoshi and Kono, 1988;
Rasband. 1990]; Tritron [1989] put forward the idea that the
Earth’s magnetic field reversal dynamics can be modeled as
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that of an excited nonlinear pendulum. In such models the
polarity reversal is driven by a low-dimensional determinis-
tic dynamics and is therefore not a random process.

Because the frequency distribution of the temporal dura-
tion of the geomagnetic periods has been interpreted to be a
Poisson or a gamma distribution [see Marzocchi and
Mulargia, 1990, 1992], a geomagnetic reversal is often
thought to be a random (high-dimensional) process, triggered
by any one or a combination of a number of possible external
disturbances [e.g., Lutz and Watson, 1988; Lowrie, 1989],
including meteoritic impacts [Glass and Zwart, 1979; Glass
et al., 1979]. Thus there is an unresolved contradiction
between the output of the deterministic models and the
random character of the geomagnetic reversals often implied
in studies of the size-frequency distribution of such data.
Although interesting attempts were made to model the
Earth’s geomagnetic reversals as a deterministic process
with noise [Crossley et al., 1986], those who study the
behavior of models tend to think of the geomagnetic rever-
sals as deterministic, and those who study the Earth's
magnetic field itself tend to think of its reversals as a
stochastic/random process.

Many different interactions are described in the hiterature
between the Earth's magnetic field dynamics and a number
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Figure 1. Diagram illustrating schematically how the
Earth's magnetic dynamo couples nonlinearly with many
different terrestrial and extraterrestrial systems. Each arrow
represents one interaction documented in the literature.
Interactions may be different at different timescales. Some
systems, such as the solar gas, the mantle, and the atmo-
sphere (a subsystem of the hydrosphere) are thought to have
a chaotic dynamics.

of different systems, which can act as external forcing
factors. Figure 1 is an attempt to summarize these interac-
tions in a coherent picture. Convection in the outer core is
probably coupled to convection in the lower mantle [McFad-
den and Merrill, 1984; Merrill and McFadden, 1990; Laj et
al., 1991], which is thought to be chaotic [Stewart and
Turcotte, 1989]. Vogt [1975] suggested that a reversal rate
change took place at the time of a major rearrangement of
the lithospheric plate migration pattern and that the core and
the upper mantle dynamics must be coupled in some way.
Variations in the geomagnetic field may correlate with some
hydrosphere circulation changes [Morner, 1989] because the
fluid outer core and the hydrosphere can interchange angular
momentum [e.g., Rochester, 1984]. Further nonlinear inter-
actions can be derived from the influence of the Sun’s
activity on the Earth's climate [Ribes et al., 1987; Friis-
Christensen and Lassen, 1991], which can influence the
core’s dynamics via interchange of angular momentum be-
tween the hydrosphere and the outer core.

These observations favor a chaotic model for the Earth’s
magnetic field dynamics. In fact, sensitivity to minute exter-
nal forces (and nonlinear interactions with a large number of
processes, giving rise to feedback) is typical of natural
systems in a chaotic regime. Thus a new picture is beginning
to emerge, in which the geomagnetic dynamics appears to be
part of an extremely complex system, where several terres-
trial subsystems (core, mantle, lithosphere, and hydro-
sphere) are coupled and tuned to each other and to extrater-
restrial dynamics as well (Figure 1).

The main question we address is: Do all the “external
influences’’ (i.e.. the coupling of core dynamics with sub-
systems other than the outer core) mask or erase an under-
lying low-dimensional deterministic geomagnetic dynamics
related to outer core convection; or is there a recognizable
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determinism under some amount of noise? This question can
be addressed by measuring the correlation dimension of the
dynamics. If the dimension of the geomagnetic field dynam-
ics is relatively low, then the system appears to be deter-
ministic and low dimensional. If the correlation dimension
does not converge to a low value (usually less than 10), then
the system is either high dimensional (that is, it is governed
by such a high number of parameters that its dynamics
cannot be distinguished from a random one), or noise masks
any underlying low-dimensional determinism that may exist.
However, the distinction between these possibilities is a
very arbitrary matter.

As explained later, given the small data sets used, we
cannot distinguish a system with a correlation dimension
larger than about three from a truly high-dimensional sys-
tem. Thus because of the many variables that affect the
Earth’s magnetic field, some of which are discussed above
and represented in Figure 1, it may appear hopeless to find
anything other than randomness and noise. However, there
are many remarkable examples of complex natural systems
that exhibit self-organization and order to a great degree,
including the Darwinian evolution of life [Eigen and
Schuster, 1979; Prigogine and Stengers, 1984; Dawkins, 1987].
A well-studied example is that of convection in the Rayleigh-
Bénard configuration [Nicolis and Prigogine, 1977; Bergé et
al., 1984). When the Rayleigh number Ra is lower than a
critical value Ra, there is no convection; the dynamics of the
molecules is due only to thermal motion, and the number of
state variables is of the order of Avogadro’s number. When Ra
exceeds Ra, convection begins, and the collective motion of
the fluid can be described by as little as two or three state
variables: the system has undergone self-organization.

Well-known examples of highly self-organized systems in
geological sciences include the spectacular mineral layering
structures found in many fossil magma chambers [Wager
and Brown, 1968: McBirney and Noyes, 1979; Boudreau,
1984; Merino, 1984], which appear highly organized, al-
though magma chambers arc very complex systems. Also,
the dynamics of an active magma chamber may be low
dimensional [Cortini et al., 1991; Cortini and Barton, 1993).
Thus it is not unreasonable to look for a deterministic
structure in the geomagnetic record, in spite of the complex-
ity of the system.

We compare the pattern of the Earth’s magnetic reversals
with synthetic magnetic reversal records generated by the
disk dynamo model of Rikitake [1958] and Chillingworth and
Holmes [1980] and look for determinism using three tech-
niques of nonlinear dynamical systems (phase portraits,
nonlinear forecasting, and the Grassberger-Procaccia meth-
od): the latter two will be outlined in the following section.

Dubois and Pambrun [1990] analyzed the geomagnetic
reversal sequence with the Grassberger-Procaccia algorithm
and a sliding window technique, and they reported a value of
the correlation dimension D ~ 2 for the period between
140 and 23 m.y.; they found higher values of D, for the
period between 23 and 0 m.y. They suggested that a quan-
titatively significant value of D¢ can be obtained for data
sets of only 50-100 points, and as explained below, we
disagree on this point.

Two Techniques of Chaos
The mathematical theory of chaos, or dynamics of nonlin-
ear systems, can be very useful in the study of complex
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systems. In favorable cases it can distinguish systems whose
macroscopic behavior and evolution is dominated by high-
dimensional noise or random processes from those whose
hehavior and evolution is deterministic and controlled by a
relatively low-dimensional dynamics, although the dynamics
mav never be known. Introductions to chaos and chaotic
attractors are given by Cvitanovic [1984], Bergé et al. [1984],
Thompson and Stewart {19861, and Schaffer et al. {1988]. a
more formal treatment is given by Sagdeev er al. [1988]. and
an excellent popular book is that of Gleick [1988). In this
section we present the two techniques of chaos that we apply
in this study: nonlinear forecasting and the so-called Grass-
berger-Proccacia method.

The forecasting method we use in this paper is described
by Sugihara and May [1990] and is implemented by Dynam-
ical Systems, Incorporated [Schaffer and Tidd, 1990]. In
nonlinear forecasting the time series is first lagged and
embedded in a n-dimensional phase space [Takens, 1981]. A
mapping of the visited phase space volume onto itself is then
constructed in the following way. A small phase space
volume dV,, which is visited by the system at time 7,, is
associated to a new volume dV ., visited by the system at
time 1, + dt. This procedure is repeated for every point
visited by the system. This mapping of the phase space
volume can now be used to formulate predictions about the
future evolution of the system. The difference between a
stochastic dynamics and a deterministic chaotic dynamics
can now be described in the following way. A random
dynamics, which is perturbed by myriads of different causes,
from a small phase space volume dV, can move to any
nearby volume. A chaotic dynamics, on the contrary, be-
cause it is deterministic, is forced to move in a well-defined
direction. When predicting the future state of data that
occupy a phase space volume 4V, because of the sensitiv-
ity to initial conditions, dV .., will be larger than 4V, and
for a & large enough, dV, ., will cover the entire visited
volume. This method allows predictions, which can be very
useful for k < kg, k, being some threshold value. It is
empirical in that the best value for the time lag, the embed-
ding dimension, and other parameters are adjusted by trial
and error. The best values are those that minimize the errors
on the predictions.

One key difference between deterministic chaos and a
random dynamics is that a chaotic dynamics may be con-
trolled by a relatively small number of state variables (fewer
than 10). If, on the contrary, the dynamics depends on
microscopic perturbations that are amplified, then the num-
ber of state variables is very large, and the dynamics is
indistinguishable from a random one. This difference pro-
vides the basis for identifying a chaotic process by means of
the so-called Grassberger-Procaccia method. This is one
way to evaluate the correlation dimension of an attractor,
which is related to the fractal dimension |Grassberger and
Procaccia. 1983]. In this method one embeds the attractor in
an n-dimensional space, with increasing n; that is, one plots
a trajectory in a space y(r + T) versus y(¢ + 27T) versus
<o+ y[r = (n — 1)T]. If the fractal correlation dimension D¢
of the attractor continues to grow with #, this suggests that
the dvnamics is not low dimensional and that the failure of
D to converge results from either high dimensionality or
amplification of noise, that is, of random perturbations
(Grassherger and Procaccia, 1983; Grassberger, 1986;
Schaffer et al.. 1988; Lorenz, 1991}, 1f the correlation

dimension D - of a nonperiodic dynamics converges to a low
value, then the dynamics may be deterministic chaos, gov-
erned by a small number of state variables (which is the
minimum value n of the embedding dimension D, for which
D converges), and its long-term unpredictability derives
from its attractor being chaotic.

There has been considerable discussion regarding the
validity of this appivach, especially on the minimum size of
a data set needed for a measurement of dimensionality to be
reliable (e.g., Grassberger, 1986, Schaffer et al., 1988,
Tsonis and Elsner, 1990]. In our experience, small sets of
data (a few hundred points) do not allow a reliable measure
of the exact value of the correlation dimension (D). Errors
may derive from a variety of sources but, in particular, from
the small size of the data set. Eckmann and Ruelle {1992]
showed that if a data set contains N points, then the value of
D obtained by the Grassberger-Procaccia method cannot
exceed 2 log;, N, which, for 282 data points, is about 4.9.
However, this is a theoretical limit for high-precision data. A
realistic limit for noisy data such as the geomagnetic reversal
set is lower than 4.9, probably around three. Therefore we
consider the actual values we calculated for Do to be
unreliable. However, our results suggest that the Grass-
berger-Procaccia method can distinguish qualitatively be-
tween a data set of 282 points whose D converges 1o a
relatively low value and one where D does not converge.
We analyzed a sequence of 282 points selected randomly
from a data set of 10,000 points of known D (Mackey-Glass
equation for time delay of 30 s, where Do ~ 3.04 [see
Schaffer et al., 1988, p. 1.73]). The Grassberger-Procaccia
method converged to Do ~ 2, quantitatively too low but
qualitatively converging to low-dimensional chaos. We then
randomized the 282 points; the method did not converge to
any value of D, (the figure was similar to Figure 10c),
thereby implying no recognizable structure in the data.

Timescale and Nonlinear Forecasting Analysis
of the Earth’s Geomagnetic Field Reversals

On the basis of the analysis of many marine magnetic
profiles, Cande and Kent [1992] defined a new magnetic field
reversal timescale from the Late Cretaceous to the present.
Because the scale of Cande and Kent [1992] does not go
back farther than 83 m.y., we have merged it with the
portion of the scale for the time interval 83-160 m.y. [Kent
and Gradstein, 1986] in order to analyze a timescale from the
present to 160 m.y. ago. For both the real and the synthetic
reversal scales we have studied the sequence of the ““mag-
netic periods™ X, = f,41 — -

The first question we asked is whether the duration X, of
the nth magnetic interval is determincd by the length of the
preceding intervals X, ;, X,_, - -+ This seemed a reason-
able hypothesis. as in the dynamo models of Rikitake [1958]
and Chillingworth and Holmes [1980], the dynamics of the
magnetic field is strictly deterministic; moreover, there are
systems, such as the dripping faucet of Shaw [1984], whose
attractors are determined by discrete time intervals (those
between falling drops), which might resemble those between
magnetic reversals. In order to answer this question we
employed the nonlinear forecasting method [Farmer and
Sidorowich. 1988; Casdagli, 1989; Sugihara and May, 1990},
as implemented by Dynamical Systems, Incorporated,
whose programs we used for many of the numerical methods
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Figure 2. (top right) Phase portrait of the attractor of the disk dynamo mode} by Rikirake {1958],
described by (1), for = 1 and k = 1.5. The attractor is cut by a vertical Poincaré plane (shown), and the
corresponding Poincaré section is shown on the top left. (bottom) Results of nonlinear forecasting applied
to the same Poincaré section of 350 points obtained by cutting the disk dynamo attractor with a Poincaré
plane (top right). Here r* is the linear correlation coefficient between the predicted values and the
observed values for each particular prediction interval. Nonlinear forecasting can predict the position of
the next point to a good degree of accuracy (correlation coefficient r° ~ 0.91 for prediction interval dr =
1). As is typical of chaotic flows, the predictability (r?) decreases as the forecasting interval increases.

described in this paper [Schaffer et al., 1988; Schaffer and
Tidd, 1990]. For nonlinear forecasting we always set the
embedding dimension D, = 2, the embedding lag 7 = 1, and
the prediction epsilon (which controls the size of the phase
space volume ¢V',;) ¢ = 0.005. The results, however, do not
critically depend on the choice of the parameter values.

The sequence of 282 points that constitutes the geomag-
netic reversal timescale appears unpredictable by nonlinear
forecasting: again. different choices of parameters do not
modify this result. This result does not rule out the possibil-
ity of Earth's magnetic field dynamics being chaotic. We will
show below that svnthetic magnetic reversal sequences from
chaotic. low-dimensional, deterministic models can be un-
predictable too.

Nonlinear Analysis of Dynamo Models
We have generated synthetic magnetic reversal sequences
from two different disk dynamo models in order to compare

them with the geomagnetic intervals. The first dynamo
model (Rikitake, 1958 [0, 1980] is described by the follow-
ing equations:

dxldt = —px + 2y
dvidt = —py + 2'x (H

dzfdr = dz'ldr =1 — xy

From the third expression onc gets z° = z + «a. where
—a = w(K? - K ~?): the Rikitake system has two fixed
points, whose coordinates in phase space are x = =K,y =
+K7' and z = uK’ Here u” is the ratio between the
“mechanical timescale™ of the system (the time that the
discs would take to accelerate to the typical angular velocity
in the absence of Lorentz forces) and the ““electromagnetic
diffusion time’’; that is. the time constant by which the field
would decay if the discs were stopped [Cook and Roberts.
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Figure 3. (top right) Phase portrait of the dynamo model of Chillingworth und Holmes [1980], described
by (2}, witha = 5.5, b = 14.625, and ¢ = . The attractor is cut by a Poincaré plane (shown), and the
corresponding Poincaré section is shown on the top left. (bottom) Results of nonlinear forecasting applied
to the same Poincaré section of 163 points obtained by cutting the disk dynamo attractor with a Poincaré
plane (top right). In spite of the small number of analyzed points (163), for prediction interval dr = | we

5

obtain r* ~ 0.97.

[970]. The latter time constant is believed to be, for the
Earth's magnetic field, of the order of 10,000 years [Merrill
and McElhinny, 1983].

The second dynamo model (Chillingworth and Holmes,
1980] is described by

dxi/dt = a(y — x)
dvidi = zx — y (2)

dz/dt = b — xy — ¢

Using a Runge-Kutta fourth-order routine, with dr =
0.0005. we have integrated (1) and (2) for several different
values of the constants., always in a chaotic regime, and have
obtained reversal records 600 to 20.000 points long. Integra-
tion of (1) and (2) yields attractors (Figures 2 and 3) that are
similar to the Lorenz attractor [Lorenz, 1963]; moreover, for
both dyvnamo models, successive maxima 7, of the z variable
exhibit a cusplike structure on a Zns Iy plot (time one
return map) similar to that of the Lorenz attractor [Loren:.

1963]. Stimulated by these similarities between the Lorenz
attractor and those of the dynamo systems, we have also
performed some integrations of the Lorenz system as de-
scribed below.

We arbitrarily took the model magnetic field to be normal
when the value of x is positive and reversed when x is
negative. Thus each time x changed its sign we assumed that
4 magnetic reversal took place and recorded the time 1,. We
analyzed the synthetic sequence of ‘“‘magnetic periods™*
Xy = 1, - f,% in this way we produced a synthetic
reversal record that can be compared with the actual Earth’s
magnetic field reversal timescale.

The results we obtained by analyzing the synthetic rever-
sal records by nonlinear forecasting vary wildly as a function
of the parameters. For both models (and for the Lorenz
system as well) the linear correlation coefficients r* between
the observed and (he predicted values at one time interval
into the future can vary between almost unity and almost
zcro. depending on the choice of the parameters. although all
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Figure 4. (a) Two-dimensional time lag phase portrait for

one synthetic reversal record X, of 731 points (Rikitake
dynamo, equation (1), with w = 1 and k = 1.5). The
‘‘magnetic interval’’ duration X, , ; is plotted as a function of
X ,. (b) Results of nonlinear forecasting on the sequence X,
(731 points), which appears to be almost completely unpre-
dictable.

the sequences are obtained by deterministic equations (see
Figures 4 to 7). Of course, the predictability of a synthetic
record also depends heavily on its length (see Figure 7b).
This is because the wider the mapping of the visited phase
space, the more accurate the predictions can be. If a chaotic
data series 10,000 points long, for which nonlinear forecast-
ing gives r® ~ 0.8, is truncated to 282 points (the number of
actual geomagnetic field reversals), r* then drops close to
zero. Thus the negative result we obtain by analyzing the
geomagnetic reversal scale by nonlinear forecasting (+> ~ 0.
apparent complete unpredictability) does not rule out the
hypothesis of low-dimensional chaos in the geomagnetic
data.

Nonlinear forecasting works consistently well in predict-
ing a different set of data; that is, the sequences of points
obtained by cutting both the Lorenz and the dynamo attrac-
tors with a Poincaré plane (Figures 2 and 3). Predictions of
Poincaré sections are good even for the parameter values
that yield the most unpredictable reversal sequences and for
small data sets of only 150-300 points. Sornette er al. [1991,
p. 11,937] analyzed the sequence of repose periods between
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eruptions in two volcanoes (data similar in nature to our
magnetic interval sequences) and wrote that ““In the case of
the attractor constructed from the sequence of repose peri-
ods between volcanic eruptions, the analog of a Poincaré
section i1s the cxtraction of a sub-sequence from the full
sequence of repose periods between eruptions.”” We dis-
agree on this point. In fact, a sequence of points of a
Poincaré section contains more information than our studied
sequences X,. In our data serics, ¢, represents the time
when one state variable assumes a particular value (x(1) =
(0 see equations (1) and (2)). Therefore each of our data
points is characterized by two scalar components: 7, and
x(r,} = 0. In contrast, a Poincaré scction of a three-
dimensional system consists of a series of points in a
three-dimensional phase space, and these are vector quanti-
ties, each one being characterized by three components:
x(t,), y(r,), and z(z,). the state variables of the system. To
appreciate this difference consider the rollowing example.
Suppose one has, at regular space intervals, the position and
speed of a car driving on a highway (points on a Poincaré
section); clearly, one has more information than if the only
known parameter were the time when the car crosses the line
between two contiguous lanes (sequence X,). Finally, we
find the conclusions of Sornette er al. [1991] are not sup-
ported by their analysis mainly because they arbitrarily
removed data points that did not fit their one-dimensional
map. Even assuming low-dimensional chaos in their data,
there is no reason to believe that their phase portrait should
fit a one-dimensional map and not a more complex one like
the Hénon attractor or like those we present in Figures 4a,
Sa, 6a, and 7a.

When the synthetic ‘*magnetic interval’' duration X, is
plotted as a function of X,, we obtain the phase portraits
reported in Figures 4a, 5a, 6a, and 7a. These figures are
chosen to represent some of the typical appearances of the
many phase portraits we obtained; in particular, the plot in
Figure 4a is very similar to those obtained from the Rikitake
mode!l with the parameter values (k = 2, =1 to 2)
suggested by Cook and Roberts [1970]. These phase por-
traits vary greatly in configuration and complexity as a
function of the model parameters, but they seem to repeat a
few basic patterns that are clearly visible in Figure 5a, and
these clearly seem to have a fractal structure (see Figures
5a-5¢).

The variability of the phase portraits as a function of the
model parameters causes the variable results produced by
nonlinear forecasting for the various synthetic magnetic
records. Phase space is stretched and folded more rapidly as
the attractors become more complex, and this makes pre-
diction of their behavior more difficult. This effect can be
quantified by measuring, with a technique described by Wolf
[1986], the maximum Lyapunov exponent of the data series,
which is defined as

Ay=hm (/1) Iny (d,/d, ~ ) (3)

| — x

and gives a measure of the divergence of two nearby orbits
in phase space. In (3). ¢ is time. d,_q is the distance between
two points in phase space at time f = 0, and d, is the
distance between the same points at time ¢. A Lyapunov
exponent A; > 0 indicates a chaotic dynamics. For our
model reversal series the maximum Lyapunov exponents,
calculated with the software of Dynamical Systems Incor-
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Figure 5. (a) Two-dimensional time lag phase portrait for one synthetic data sequence X, of 9511 points
(Rikitake dynamo, equation (1), with g = 2 and k = 0.2). (b) and (c) Sequential magnifications of a portion
of Figure Sa are suggestive of a fractal structure. (d) Predictions of nonlinear forecasting for this simpler
attractor (r* ~ 0.90 for a sequence reduced to 300 points at dt = 1) are much better than for that of

Figure 4.

porated, range from about 0.6 for the data in Figure 5 to
about 3.6 for the data in Figures 4 and 7. The units of A; are
bits of information lost per time interval. The higher the A;,
the more sensitive the dynamics is to initial conditions, and
the more difficult it is to forecast.

The basic structure of these attractors looks like, and may
be related to. the Hénon attractor [Hénon, 1976], which was
constructed to model the behavior of the Lorenz attractor
with a discontinuous system. The exact nature of this
relationship. how these structures vary as a function of the
parameters., and how they could be described by difference
equations, are problems beyond the scope of this paper. Itis
clear. however, that the structures shown in -Figures 4-7
behave as attractors. A single closed loop (limit cycle) of the
Lorenz attractor. for example, corresponds 1o a single point
in the X, X,+, phase diagrams, and periodic cycles corre-
spond to a finite number of points. Based on the aperiodicity
of the synthetic polarity reversal records, and on visual
inspection of Figures Sa-5c, we suggest that, in a chaotic
regime, the X, X, .| phase diagrams must really be fractal,
although we have not been able to demonstrate this point.

When the geomagnetic reversal data are represented in a

X, X, plot (Figure 8), they appear featureless in com-
parison with the model attractors. although qualitatively the
density distribution on the geomagnetic data is rather similar
to those of some model sequences; the attractor in Figure 4,
with some noise added, might look rather similar to the
actual data, but we have not demonstrated this.

The reversal sequences X ,, generated by the two model
dynamos can also be represented in a three-dimensional
space. Figure 9a shows one of such sequences, where -the
points have been connected by straight lines. This figure
appears to contain some structure. Sornetie et al. {1991], in
their analysis of the sequence of repose periods between
volcanic eruptions, interpreted such a structure in their data
as suggesting that the temporal sequence of volcanic erup-
tions is controlled by deterministic chaos. However, our
model magnetic reversal scale, after randomization (in which
any structure in the sequence of the magnetic periods is
destroyed). appears to contain a degree of structure similar
to the original (Figure 9b). Some randomized model data
sequences, made by using different seed numbers. appear
even more structured than the original sequence. Thus the
structure perceived by the human eye in Figure 9 is only
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Figure 6. (a) Two-dimensional time lag phase portrait for
one synthetic data sequence X, of 4461 points obtained from
the Lorenz system (¢ = 10, b = 50, and ¢ = 8/3). The
attractor in this figure has similarities to those in Figures 4
and 7. (b) Results of nonlinear forecasting on the
sequence X ,.

apparent. We suggest that the pattern in these three-
dimensional plots is even less distinct than it is in the
two-dimensional plots, like those in Figures 4-8, which
further suggests to us that the structure observed in thesc
plots for volcanic repose times by Sornette et al. {1991] may
also be only apparent.

Correlation Dimension of The Geomagnetic
Reversal Record and Model Data

Another possible approach to analyzing magnetic records
is the Grassberger-Procaccia method {Grassberger and Pro-
caccia, 1983; Grassberger, 1986; Lorenz, 1991]. The concept
of this approach is that the dimension of a noisy, or random,
dynamics tends to infinity; in contrast, a deterministic cha-
otic dynamics may be of low dimension. Thus if one has an
aperiodic dynamics, and can demonstrate that the fractal
dimension of the attractor is low (usually less then 10), this
is taken to mean that the dynamics is deterministically
chaotic.

We used the Grassberger-Procaccia method to analyze the
synthetic records for both the dynamo models and for the
Lorenz model; we further analyzed the actual geomag-
netic reversal sequence. The value of the correlation dimen-
sion (D) we obtained for the dynamo models and the
Lorenz model is always approximately one (Figure 10a).
This result is quantitatively reliable because (1) we consis-
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tently obtain it for all the model record sequences, and
(2) the model records are much longer than the geomagnetic
records (from 600 up to about 20,000 points). Grassberger
and Procaccia [1983, p. 191] reported that D = D, the
Jatter being the fractal or Hausdorff-Besikovich dimension.
and that “‘in general the inequality is rather tight.”” Thus the
fractal dimension of the attractors depicted in Figures 4-7 is
approximately one. One feature of Figure 10a is that the
slopes of the correlation integrals seem to increase indefi-
nitely for values of In(g) (where g is the correlation length.
normalized to the overall attractor length) higher than about
-6 but converge for values between about — 11 and —7. The
reason is that at large values of g one is looking at the
distribution of the basic patterns on the plane (see Figure
4a), and that is not fractal. It is the structure within those
patterns that has a low value of the fractal dimensicn, as 1s
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Figure 7. (a) Two-dimensional time lag phase portrait for
one synthetic record X, of 19,083 points (Chillingworth and
Holmes dynamo. equation (2), with a = 5.5, b = 14.625.
and ¢ = 1). (b) Results of nonlinear forecasting applied to
the same sequence. for dr = 1. as a function of the number
of points analyzed. Curves a and b are the parameters of the

regression line v = hx + a: r* is the linear correlation
coefficient. For perfect predictions, ¢ = 0, » = 1. and
r- =1
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also true of the Hénon attractor. To us. the phase portraits
look as if they are distorted and superimposed views of the
Hénon attractor.

For the geomagnetic reversal record we obtain apparent
convergence at D ~ 3 (Figure 10b), but the scaling region
is not clearly defined. Therefore as explained above, this
result is not quantitatively meaningful. In contrast, D does
not converge for any of the randomized data records but
increases indefinitely with the embedding dimension D,
(Figure 10¢). Similar results are also obtained when this
analysis is made on the geomagnetic reversal timescales of
Harland et al. [1982] and of Kent and Gradstein [1986]. In a
further test we found that random addition of 20-25 very
short magnetic intervals to the Earth’s magnetic field data
sets results in apparent convergence of the correlation
integrals to higher values of D¢ (~4). These results do not
let us assess quantitatively low-dimensional chaos in the
geomagnetic reversal data. The Grassberger-Procaccia
method shows a clear difference between measured and
randomized reversal sets, which suggests that the dynamics
of the geomagnetic field is not random. It may be low
dimensional, but a Grassberger-Procaccia analysis of the
present reversal data sets lets us only establish a lower limit
for its correlation dimension: D¢ > 3.

Summary and Conclusions

We have studied the record of reversals of the Earth’s
magnetic field from the present to 160 Ma using three
techniques of nonlinear dynamics: phase portraits, nonlinear
forecasting, and the Grassberger-Procaccia method. The
analyzed geomagnetic reversal sequences appear to be un-
predictable by nonlinear forecasting. The Grassberger-
Procaccia method appears to converge to a low value (D¢ ~
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Figure 8. Two-dimensional time lag phase portrait for the

Earth’s magnetic field reversal data sequence X ,. Although
this phase portrait appears featureless, there is some resem-
blance between the density distribution of the points in this
figure and those in Figures 4 or 7a. The representative point
of the Cretaceous superchron (which lasted about 35 m.y.) 1S
not plotted.
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A Xn+2

Figure 9. A three-dimensional time lag phase portrait for
the Earth's geomagnetic field (EGF) reversal data sequence
(the representative point of the Cretaceous superchron is nct
plotted). (a) EGF reversal data. (b) Same data as in Figure
4a, after randomization.

3) of the correlation dimension for the magnetic period
sequence. Because of the small size of the geomagnetic
reversal data set (only 282 points), and of the poor definition
of the scaling region, this result is quantitatively not mean-
ingful.

The clear difference in the correlation integrals between
measured and randomized reversal sequences suggests
that the geomagnetic reversal dynamics is not random
and that low-dimensional chaos, if not detected. can be
suspected.

We have produced synthetic reversal records from two
self-excited bistable disk dynamo models [Rikitake, 1958:
Chillingworth and Holmes, 1980] and have analyzed these
records as we have analyzed the actual geomagnetic record.
Phase portraits of the synthetic reversal records reveal a
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Figure 10. An evaluation of the correlation dimension D¢ of the dynamo model and the geomagnetic

reversal data. The left upper window shows correlation integrals C(g) plotted against normalized length
scales g for different embedding dimensions of the time series, on a In-In scale. Solid lines show intervals
used to calculate the slopes. The slopes yield the correlation dimensions D, which are plotted against the
embedding dimensions D, in the bottom left window. The error bars in the lower left window represent
the analytical errors on the slope regression. The large window on the right shows the slopes of the
correlation integrals as a function of the natural logarithm of the correlation length g; the heavy vertical
lines show the intervals used to calculate the slopes. (a) Data sequence produced by integrating (1)
(Rikitake model dynamo; parameter values are k = 2, u = 1.5, dr = 0.0005; 4007 points). Note that the
slopes of the correlation integrals converge to about one for low values of In( g); see text. (b) Geomagnetic

reversal data. (¢c) Same data as in Figure 10b, after randomization.

diversity of complex structures, apparently fractal, that vary
widely as a function of the model parameters. Structures
with similar characters appear in both model dynamo sys-
tems and in the Lorenz system as well (Figures 4-7).
Nonlinear forecasting can predict the synthetic reversal
sequences quite well when the phase portraits are relatively
simple. When the phase portraits are more complex, and the
data set is reduced to 300 points, the predicting power of
nonlinear forecasting drops to zero. This implies that the
negative result obtained by nonlinear forecasting for the
geomagnetic data does not rule out low-dimensional chaos
for the Earth's magnetic field dynamics.

The correlation dimension D~ of the model reversal
sequences is approximately one. Because the synthetic
reversal records are longer (600-20,000 points) than the
geomagnetic record. and because we consistently obtain
D¢ ~ 1. we feel that this result is quantitatively significant.

Low-dimensional chaos can appear in natural systems for
two essentially different reasons. On one hand, as discussed
in the introduction. a natural system can undergo self-
organization. At the onset of convection, for example, the
state space collapses onto itself, and the number of state

variables can be reduced by orders of magnitude. On the
other hand, low-dimensional chaos can appear in turbulent
systems, like the weather, which are very high dimensional.
For example, Tsonis and Elsner {1988] and Essex et al.
[1987] examined the weather system at time scales of
seconds and days, respectively, and found low values of
D [see Lorenz, 1991, and references therein]. Lorenz
[1991] proposed an elegant explanation for this apparent
contradiction. He studied an artificially constructed high-
dimensional system and showed that the Grassberger-
Procaccia method may converge to low estimates of D¢ if
the analyzed variable is strongly coupled to only a few of
the state variables of the system and loosely coupled to
many others. His work explains why low-dimensional chaos
may appear in highly complex systems exhibiting many
degrees of freedom like the weather, especially when one
is limited to exploration of particular spatial domains or
timescales.

Thus in the case of the Earth’s magnetic field. assessing
low-dimensional chaos would not be enough. More thought,
and better data, are needed to assess self-organization in the
system of Figure 1.
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